4.6 Article

Nanostructured Garnet-Type Solid Electrolytes for Lithium Batteries: Electrospinning Synthesis of Li7La3Zr2O12 Nanowires and Particle Size-Dependent Phase Transformation

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 119, 期 27, 页码 14947-14953

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b03589

关键词

-

资金

  1. Fulton Schools of Engineering at ASU
  2. NSF [DMR-1206795]
  3. Fulton Undergraduate Research Initiative at ASU

向作者/读者索取更多资源

Lithium lanthanum zirconate (LLZO) is a promising ceramic solid electrolyte for all-solid-state lithium batteries with improved safety characteristics. However, the different phases of LLZO differ in lithium ionic conductivity by several orders of magnitude, with extrinsic dopants often required to stabilize the high conductivity cubic phase. Here we show that cubic LLZO can be stabilized at room temperature in nano-structured particles without the use of extrinsic dopants. LLZO nanowires were synthesized using electrospinning and formed cubic phase materials after only 3 h calcination at 700 degrees C. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phases in both types of nanostructured LLZO. Detailed structural characterizations with XRD and TEM were performed to understand the LLZO formation processes and phase transformations. This work demonstrates another strategy, namely the use of nanostructuring, as an alternative to extrinsic doping for obtaining cubic phase LLZO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据