4.7 Article

Rain forest nutrient cycling and productivity in response to large-scale litter manipulation

期刊

ECOLOGY
卷 90, 期 1, 页码 109-121

出版社

WILEY
DOI: 10.1890/07-1146.1

关键词

Costa Rica; decomposition; La Selva Biological Research Station; litter manipulation; litter production; nitrogen; phosphorus; rainfall; wet tropical forest; woody growth

类别

资金

  1. Andrew W. Mellon Foundation
  2. University of Virginia
  3. National Science Foundation [DEB9629245, EAR-0421178]
  4. Department of Energy [DE-FG02-96ER62289]

向作者/读者索取更多资源

Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Ninos. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (< 2 cm diameter) were removed from a 400-m(2) area and added to an adjacent 100-m(2) area. This transfer was the equivalent of adding 5-25 kg/ha of organic P to the forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release from decomposing litter influences the magnitude. Seasonal or annual variation in leaf litter mass, such as occurs in strong El Nino events, could positively affect leaf litter nutrient cycling and forest productivity, indicating an ability of tropical trees to rapidly respond to increased nutrient availability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据