4.6 Article

Wind field and sex constrain the flight speeds of central-place foraging albatrosses

期刊

ECOLOGICAL MONOGRAPHS
卷 79, 期 4, 页码 663-679

出版社

WILEY
DOI: 10.1890/07-2111.1

关键词

albatrosses; ARGOS errors; central-place foraging; dynamic or gust soaring; flight speed; habitat preference; niche specialization; platform terminal transmitters, PTT; satellite tracking; seabird; sexual segregation; South Georgia

类别

资金

  1. U. K. Natural Environment Research Council [NER/S/A/2005/13648]
  2. British Antarctic Survey
  3. Natural Environment Research Council [bas0100025] Funding Source: researchfish
  4. NERC [bas0100025] Funding Source: UKRI

向作者/读者索取更多资源

By extracting energy from the highly dynamic wind and wave fields that typify pelagic habitats, albatrosses are able to proceed almost exclusively by gliding flight. Although energetic costs of gliding are low, enabling breeding albatrosses to forage hundreds to thousands of kilometers from their colonies, these and time costs vary with relative wind direction. This causes albatrosses in some areas to route provisioning trips to avoid headwind flight, potentially limiting habitat accessibility during the breeding season. In addition, because female albatrosses have lower wing loadings than males, it has been argued that they are better adapted to flight in light winds, leading to sexual segregation of foraging areas. We used satellite telemetry and immersion logger data to quantify the effects of relative wind speed, sex, breeding stage, and trip stage on the ground speeds (V-g) of four species of Southern Ocean albatrosses breeding at South Georgia. V-g was linearly related to the wind speed component in the direction of flight (V-wf), its effect being greatest on Wandering Albatrosses Diomedea exulans, followed by Black-browed Albatrosses Thalassarche melanophrys, Light-mantled Sooty Albatrosses Phoebatria palpebrata, and Gray-headed Albatrosses T. chrysostoma. Ground speeds at V-wf = 0 were similar to airspeeds predicted by aerodynamic theory and were higher in males than in females. However, we found no evidence that this led to sexual segregation, as males and females experienced comparable wind speeds during foraging trips. Black-browed, Gray-headed, and Light-mantled Sooty Albatrosses did not engage in direct, uninterrupted bouts of flight on moonless nights, but Wandering Albatrosses attained comparable V-g night and day, regardless of lunar phase. Relative flight direction was more important in determining V-g than absolute wind speed. When birds were less constrained in the middle stage of foraging trips, all species flew predominantly across the wind. However, in some instances, commuting birds encountered headwinds during outward trips and tail winds on their return, with the result that V-g was 1.0-3.4 m/s faster during return trips. This, we hypothesize, could result from constraints imposed by the location of prey resources relative to the colony at South Georgia or could represent an energy optimization strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据