4.5 Article

Combining system dynamics and hybrid particle swarm optimization for land use allocation

期刊

ECOLOGICAL MODELLING
卷 257, 期 -, 页码 11-24

出版社

ELSEVIER
DOI: 10.1016/j.ecolmodel.2013.02.027

关键词

Land use allocation; System dynamics; Hybrid particle swarm optimization

类别

资金

  1. National Natural Science Foundation of China [41171308, 40901187]
  2. Key National Natural Science Foundation of China [40830532]

向作者/读者索取更多资源

Urban land use spatial allocation is crucial to lots of countries that are usually under severe environmental and demographic pressures, because it can be used to alleviate some land use problems. A number of models have been proposed for the optimal allocation of land use. However, most of these models only address the suitability of individual land use types and spatial competition between different land uses at micro-scales, but ignore macro-level socio-economic variables and driving forces. This article proposes a novel model (SDHPSO-LA) that integrates system dynamics (SD) and hybrid particle swarm optimization (HPSO) for solving land use allocation problems in a large area. The SD module is used to project land use demands influenced by economy, technology, population, policy, and their interactions at macro-scales. Furthermore, particle swarm optimization (PSO) is modified by incorporating genetic operators to allocate land use in discrete geographic space. The SDHPSO-LA model was then applied to a case study in Panyu, Guangdong, China. The experiments demonstrated the proposed model had the ability to reflect the complex behavior of land use system at different scales, and can be used to generate alternative land use patterns based on various scenarios. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据