4.5 Article

Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study

期刊

ECOLOGICAL MODELLING
卷 222, 期 3, 页码 719-726

出版社

ELSEVIER
DOI: 10.1016/j.ecolmodel.2010.10.027

关键词

Farmyard manure; Gliricidia; Nitrogen; Mineralization/immobilization; Modelling; APSIM

类别

资金

  1. Australian Centre for International Agricultural Research, Canberra

向作者/读者索取更多资源

Predicting N mineralization from organic manures like farmyard manure (FYM) is more difficult than from fresh organic materials like crop residues, as the manures vary greatly in composition. A laboratory incubation experiment was carried out for 98 days at 30 degrees C under aerobic conditions to study the effects on N dynamics of Gliricidia (Gliricidia sepium, Jacquin) and FYM application to soil at 5 and 10 g kg(-1). Application of Gliricidia induced N mineralization from the start of incubation period, with the amount of N mineralized increasing with rate of application. In contrast, application of FYM resulted in immobilization of mineral N in soil, irrespective of the rate of application. The initial net immobilization from FYM was limited by availability of N in the soil for the higher rate of application. We used the APSIM SoilN module to simulate these contrasting patterns of mineralization of N from Gliricidia and from FYM. The prediction of N mineralized from Gliricidia was better than FYM. The default model parameters specify that the fresh organic matter pools (FPOOL1. FPOOL2 and FPOOL3) have the same C:N ratio and this assumption was ineffective in predicting N mineralized from FYM. The predictive ability of the model improved when this default assumption was modified based on the size of the individual pools (FPOOL1, FPOOL2 and FPOOL3), and the pool's C:N ratios. The modelling efficiency, a measure of goodness of fit between the simulated and observed data, improved markedly for the modified model. The discrepancy between the modelled and observed data was a tendency for the model to underestimate the rate of re-mineralization at the lower rate of application of FYM in the later part of incubation. Unfortunately the appropriate modification to the size and C:N ratios of the FPOOLs could not be determined on the basis of chemical analysis alone. Thus, a true predictive application of the model to a new FYM material is not yet possible. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据