4.5 Article

Modelling directional spatial processes in ecological data

期刊

ECOLOGICAL MODELLING
卷 215, 期 4, 页码 325-336

出版社

ELSEVIER
DOI: 10.1016/j.ecolmodel.2008.04.001

关键词

directional spatial process; geographic eigenfunctions; Mastigouche Reserve; Moran's eigenvector maps (MEM); Salvelinus fontinalis; spatial analysis; spatial autocorrelation; spatial model

类别

向作者/读者索取更多资源

Distributions of species, animals or plants, terrestrial or aquatic, are influenced by numerous factors such as physical and biogeographical gradients. Dominant wind and current directions cause the appearance of gradients in physical conditions whereas biogeographical gradients can be the result of historical events (e.g. glaciations). No spatial modelling technique has been developed to this day that considers the direction of an asymmetric process controlling species distributions along a gradient or network. This paper presents a new method that can model species spatial distributions generated by a hypothesized asymmetric, directional physical process. This method is an eigenfunction-based spatial filtering technique that offers as much flexibility as the Moran's eigenvector maps (MEM) framework; it is called asymmetric eigenvector maps (AEM) modelling. information needed to construct eigenfunctions through the AEM framework are the spatial coordinates of the sampling or experimental sites, a connexion diagram linking the sites to one another, prior information about the direction of the hypothesized asymmetric process influencing the response variable(s), and optionally, weights attached to the edges (links). To illustrate how this new method works, AEM is compared to MEM analysis through simulations and in the analysis of an ecological example where a known asymmetric forcing is present. The ecological example reanalyses the dietary habits of brook trout (Salvelinus fontinalis) sampled in 42 lakes of the Mastigouche Reserve, Quebec. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据