4.6 Article

Molecular Simulation of Structure and Diffusion at Smectite-Water Interfaces: Using Expanded Clay Interlayers as Model Nanopores

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 119, 期 30, 页码 17126-17136

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b03314

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

In geologic Settings relevant to a nuniber of extraction and, potential sequestration processes, nanopores botifided by clay mineral surfaces play a critical role in the transport of aqueous, species, Solution, structure and dynamics at,clay water interfaces are, quite different front, their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water and ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with:, subtle differences in sodium ad-sorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of Surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. A comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but similar to 1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. The presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据