4.6 Article

Tailoring the Structural, Optical, and Photoluminescence Properties of Porous Silicon/TiO2 Nanostructures

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 119, 期 13, 页码 7164-7171

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b01670

关键词

-

资金

  1. National Centre for Research and Development [PBS1/A9/13/2012]

向作者/读者索取更多资源

The structural, optical, and photoluminescence properties of porous silicon (PSi)/titanium dioxide (TiO2) nanostructures were investigated. PSi structures consisting of macro- and mesoporous layers were fabricated by metal-assisted chemical etching, and then TiO2 was introduced inside the PSi matrix using the atomic layer deposition technique. We performed scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectroscopy, ellipsometry, and photoluminescence (PL) spectroscopy to characterize the prepared and annealed PSi/TiO2 nanostructures. TEM and Raman analyses revealed that TiO2 had a crystalline anatase structure. PL measurements of the PSi/TiO2 composite system showed two broad peaks at approximately 2.4-3 eV (blue PL) and 1.7-1.9 eV (red PL). The mechanisms of the emissions were discussed, and it was found that two main competing recombination mechanisms take place, including radiative recombination through the surface states (surface recombination) and through oxygen vacancies and self-trapped excitons (volume recombination).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据