4.6 Article

Estimation of factor of safety of rooted slope using an evolutionary approach

期刊

ECOLOGICAL ENGINEERING
卷 64, 期 -, 页码 314-324

出版社

ELSEVIER
DOI: 10.1016/j.ecoleng.2013.12.047

关键词

Multi-gene genetic programming; FOS prediction; Evolutionary; GPTIPS; LS-SVM

资金

  1. Singapore Ministry of Education Academic Research Fund [RG30/10]

向作者/读者索取更多资源

Use of roots as one of slope stabilization technique via mechanical reinforcement has received considerable attention in the past few decades. Several mathematical models have been developed to estimate the additional cohesion due to roots, which is useful for the calculation of factor of safety (FOS) of the rooted slopes using finite element method (FEM) or finite difference method. It is well understood from the literature that the root properties such as root area ratio (RAR) and root depth affects the mobilized tensile stress per unit area of soil consequently affecting the FOS of the rooted slope. In addition, a fracture phenomenon also influences the FOS of the rooted slope and should also be considered. In the present work, a new evolutionary approach, namely, multi-gene genetic programming (MGGP) is presented, and, applied to formulate the mathematical relationship between FOS and input variables such as slope angles, root depth and RAR of the rooted slope. The performance of MGGP is compared to those of artificial neural network and support vector regression. Based on the evaluation of the performance of the models, the proposed MGGP model outperformed the two other models and is proved able to capture the characteristics of the FEM model by unveiling important parameters and hidden non-linear relationships. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据