4.6 Article

Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China

期刊

ECOLOGICAL ENGINEERING
卷 61, 期 -, 页码 50-57

出版社

ELSEVIER
DOI: 10.1016/j.ecoleng.2013.09.056

关键词

Carbon mineralization; Microbial biomass carbon; Plant invasions; Soil labile organic carbon pool fractions; Soil organic carbon; Water-soluble organic carbon

资金

  1. National Basic Research Program of China [2013CB430405]

向作者/读者索取更多资源

The impacts of plant invasions are of great concern in the terrestrial carbon (C) cycling. However, the consequences of plant invasions for soil organic carbon (SOC) dynamics are not well understood. In this study, we conducted a field experiment to examine the effects of an exotic C-4 perennial grass, Spartina alterniflora, on SOC pool and its fractions by comparing with native C-3 plant Suaeda salsa and Phragmites australis soils and bare flat in a coastal wetland of Eastern China for one year. Soil samples from S. alterniflora invaded soil, bare flat, S. salsa and P. australis soils were measured for the soil water-soluble organic carbon (WSOC), microbial biomass carbon (MBC), cumulative CO2-C mineralization (MINC), soil organic carbon (SOC), total nitrogen (TN) and the C:N ratio. Short-term S. alterniflora invasions significantly increased WSOC, MBC, MINC, SOC and TN levels in the upper 0-30cm soil layer compared to bare flat and native C-3 plant communities, but significantly decreased WSOC/SOC, MBC/SOC and MINC/SOC ratios relative to bare flat. S. alterniflora invasions also considerably increased aboveground and root biomass. The C:N ratio in S. alterniflora soil was significantly higher than that in S. salsa and P. australis soils, but with no difference from bare flat. Our results suggest that S. alterniflora invasions could enhance SOC sequestration possibly due to large amounts of litter biomass input but lower proportion of soil labile organic carbon pool fractions and mineralizable carbon in per unit SOC. Plant invasions could change the quantity and quality of the SOC pool and thus, have potential impacts on ecosystem functioning and global C cycling. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据