4.6 Article

In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina)

期刊

ECOLOGICAL ENGINEERING
卷 35, 期 10, 页码 1395-1404

出版社

ELSEVIER
DOI: 10.1016/j.ecoleng.2009.05.011

关键词

Phytoremediation; Abiotic desorption; Bioavailability; PAHs; PCBs; Seagrass; Eelgrass; Zostera marina; Sediment; Bioaccumulation; Biodegradation

资金

  1. Office of Naval Research (DoD)
  2. Office of Science (DOE)

向作者/读者索取更多资源

in view of the fact that there are presently no cost-effective in situ treatment technologies for contaminated sediments, a 60-week-long phytoremediation feasibility Study was conducted in seawater-supplied outdoor ponds to determine whether eelgrass (Zostera marina) is capable of removing polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from submerged marine sediments. It was determined that all PAHs and PCBs, independent of the number of aromatic rings and degree of chlorination, respectively, were removed to a much larger extent in planted sediments compared to unplanted controls. After 60 weeks of treatment, the concentration of total PAHs decreased by 73% in planted sediments but only 25% in unplanted controls. Similarly, total PCBs declined by 60% in the presence of plants while none were removed in the unplanted sediment. Overall, the apparent PAH and PCB biodegradation was greatest in the sediment layer that contained most of the eelgrass roots. Abiotic desorption tests conducted at week 32 confirmed that the phytoremediation process was not controlled by mass-transfer or bioavailability limitations since all PAHs and PCBs desorbed rapidly and to a large extent from the sediment. PAHs were detected in both roots and shoots, with root and shoot bioaccumulation factors for total PAHs amounting to approximately 3 and 1, respectively, after 60 weeks of phytoremediation treatment. Similarly, the root bioaccumulation factor for total PCBs was around 4, while no PCBs were detected in the eelgrass leaves at the end of the experiment. The total mass fraction of PAHs and PCBs absorbed and translocated by plant biomass during the 60-week period was insignificant, amounting to less than 0.5% of the total mass of PAHs and PCBs which was initially present in the sediment. Finally, the number of total heterotrophic bacteria and hydrocarbon degraders was slightly but not statistically significantly greater in planted sediments than in unplanted controls. After ruling out contaminant loss to the water column or absorption and transformation within plant cells, it is most likely that the presence of eelgrass stimulated the microbial biodegradation of PAHs and PCBs in the rhizosphere by releasing root exudates, plant enzymes, or even oxygen. Additional research is needed to further elucidate these potential phytoremediation mechanisms. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据