4.7 Article

Is catchment productivity a useful predictor of taxa richness in lake plankton communities?

期刊

ECOLOGICAL APPLICATIONS
卷 22, 期 2, 页码 624-633

出版社

ECOLOGICAL SOC AMER
DOI: 10.1890/11-1126.1

关键词

catchment; diversity; Finland; macroecology; NDVI; normalized difference vegetation index; phytoplankton; ponds; remote sensing; scale; zooplankton

资金

  1. Academy of Finland

向作者/读者索取更多资源

The influence of catchment variables on lake organisms is understudied. The terrestrial zone in the vicinity of lakes is, however, probably highly important for biota due to the effects on water chemistry and to various processes operating across ecosystem boundaries. We examined the relative importance of lake and catchment variables, as well as large-scale geographical factors, on the taxa richness of phyto- and zooplankton in 100 small lakes in Finland. In variation partitioning, the variability of phytoplankton richness was most strongly related to the effects of lake variables, the joint effects of lake and catchment variables, and the joint effects of all three groups of variables. Zooplankton richness, in turn, was most strongly related to the effects of lake and catchment variables and the joint effect of lake and catchment variables. The exact results of the variation partitioning depended on the catchment sizes considered in the regression models. Among lake variables, planktonic richness was strongly related to variables indicating productivity. Among catchment variables, the normalized difference vegetation index (NDVI), indicating catchment productivity, showed a relatively strong association with planktonic richness. These results provide evidence that catchment variables such as the NDVI may be efficient predictors of planktonic richness in small lakes. It is possible that individual lakes embedded in a highly productive landscape have higher taxa richness than solitary, potentially productive lakes because of the high influx of dispersing propagules from the regional pool. We also suggest that catchment variables may respond to environmental changes at different scales than the lake variables, and explicit consideration of catchment productivity would therefore be useful when planning research and monitoring programs. for freshwater organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据