4.7 Article

Prognosis for ecosystem recovery following rodent eradication and seabird restoration in an island archipelago

期刊

ECOLOGICAL APPLICATIONS
卷 20, 期 5, 页码 1204-1216

出版社

WILEY
DOI: 10.1890/09-1172.1

关键词

Cook Strait; New Zealand; ecosystem recovery; eradication; invasive rodent species; island restoration; seabird restoration; social facilitation; spatial subsidies; stable isotope analysis

资金

  1. National Geographic Society's Committee for Research Exploration
  2. Yale Institute of Biospheric Studies
  3. Yale School of Forestry and Environmental Studies
  4. Yale Earth Systems Center for Stable Isotopic Studies
  5. American Philosophical Societyl
  6. Sophie Danforth Conservation Biology Fund
  7. Leopold Schepp Foundation

向作者/读者索取更多资源

Invasive species are widespread and can have devastating effects on biota, especially insular biota. Invasive species eradications are increasingly employed to promote island recovery to preinvasion states. However, it remains unclear if additional restoration actions may be required on islands that were once heavily reliant on seabird guano for ecosystem functions. Active seabird augmentation has been suggested as necessary to exact ecosystem recovery on contemporary timescales in some cases. I use two experiments on offshore islands in Cook Strait, New Zealand, to test the hypothesis that seabird restoration will restore island ecosystem functioning following invasive rodent removal. The first is a small-scale single-island fertilization experiment that simulates seabird recovery. This experiment tested the recovery potential of offshore islands and was used to infer the density of seabirds needed to elicit ecosystem recovery. The second is a large-scale natural experiment that takes advantage of eight islands with differing rodent eradication and seabird restoration histories. I compared ecosystem functioning variables (delta N-15, C:N ratios in soil, plants, and spiders, as well as arthropod abundance and diversity) on two islands that had rodents eradicated and two islands undergoing seabird augmentation with two control islands (never invaded by rodents) and two positive control islands (currently invaded by rodents). The results suggest that islands do have the potential for recovery given nutrient amendments, but that islands with rodents eradicated and islands undergoing seabird augmentation have not recovered most of their ecosystem function. Finer, intra-island analysis showed that seabird restoration projects have the potential to speed the recovery process, but that the projects on the studied seabird restoration islands were not advanced enough to produce island-wide recovery. The results suggest that high seabird densities (5-10 burrows/m(2)) are needed to promote recovery to never-invaded control levels. Seabird augmentation, through chick translocation and/or social facilitation with decoys, vocalization playbacks, and/or mirrors can supplement passive seabird recovery on islands where seabirds have been extirpated or extremely reduced by invasive predators. Such restoration efforts may be necessary to promote ecosystem recovery on contemporary timescales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据