4.7 Review

Multiple interacting ecosystem drivers: toward an encompassing hypothesis of oak forest dynamics across eastern North America

期刊

ECOGRAPHY
卷 34, 期 2, 页码 244-256

出版社

WILEY
DOI: 10.1111/j.1600-0587.2010.06390.x

关键词

-

向作者/读者索取更多资源

Many forests of eastern North American are undergoing a species composition shift in which maples (Acer spp.) are increasingly important while oak (Quercus spp.) regeneration and recruitment has become increasingly scarce. This dynamic in species composition occurs across a large and geographically complex region. The elimination of fire has been postulated as the driver of this dynamic; however, some assumptions underlying this postulate have not been completely examined, and alternative hypotheses remain underexplored. Through literature review, and a series of new analyses, we examined underlying assumptions of the oak and fire hypothesis and explored a series of alternative hypotheses based on well-known ecosystem drivers: climate change, land-use change, the loss of foundation and keystone species, and dynamics in herbivore populations. We found that the oak-maple dynamic began during a shift in climate regime-from a time of frequent, severe, multi-year droughts to a period of increased moisture availability. Anthropogenic disturbance on the landscape changed markedly during this same time, from an era of Native American utilization, to a time characterized by low population densities, to Euro-American settlement and subsequent land transmogrification. During the initiation of the oak-maple dynamic, a foundation species, the American chestnut, was lost as a canopy tree across a broad range. Several important browsers and acorn predators had substantial population dynamics during this period, e.g. white-tailed deer populations grew substantially concurrent with increasing oak recruitment failure. In conclusion, our analyses suggest that oak forests are reacting to marked changes in a suite of interlocking factors. We propose a multiple interacting ecosystem drivers hypothesis, which provides a more encompassing framework for understanding oak forest dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据