4.5 Article

An NGA model for the average horizontal component of peak ground motion and response spectra

期刊

EARTHQUAKE SPECTRA
卷 24, 期 1, 页码 173-215

出版社

EARTHQUAKE ENGINEERING RESEARCH INST
DOI: 10.1193/1.2894832

关键词

-

资金

  1. Directorate For Geosciences
  2. Division Of Earth Sciences [1600087] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present a model for estimating horizontal ground motion amplitudes caused by shallow crustal earthquakes occurring in active tectonic environments. The model provides predictive relationships for the orientation-independent average horizontal component of ground motions. Relationships are provided for peak acceleration, peak velocity, and 5-percent damped pseudo-spectral acceleration for spectral periods of 0.01 to 10 seconds. The model represents an update of the relationships developed by Sadigh (1997) and incorporates improved magnitude and distance scaling forms as well as hanging-wall effects. Site effects are represented by smooth functions of average shear wave velocity of the upper 30 m (V-S30) and sediment depth. The new model predicts median ground motion that is similar to Sadigh (1997) at short spectral period, but lower ground motions at longer periods. The new model produces slightly lower ground motions in the distance range of 10 to 50 km and larger ground motions at larger distances. The aleatory variability in ground motion amplitude was found to depend upon earthquake magnitude and on the degree of nonlinear soil response, For large magnitude earthquakes, the aleatory variability is larger than found by Sadigh (1997).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据