4.6 Article

Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios

期刊

出版社

WILEY
DOI: 10.1002/eqe.782

关键词

seismic; intensity measure; fragility; bridges

向作者/读者索取更多资源

Probabilistic seismic demand models are a common and often essential step in generating analytical fragility curves for highway bridges. With these probabilistic models being traditionally conditioned on a single seismic intensity measure (IM), the degree of uncertainty in the models is dependent on the IM used. Selection of an optimal IM for conditioning these demand models is not a trivial matter and has been the focus of numerous studies. Unlike previous studies that consider a single structure for IM selection, this study evaluates optimal IMs for use when generating probabilistic seismic demand models for bridge portfolios such as would be found in HAZUS-MH. Selection criteria such as efficiency, practicality, sufficiency, and hazard computability are considered in the selection process. A case study is performed considering the multi-span simply supported steel girder bridge class. Probabilistic seismic demand models are generated considering variability in the geometric configurations and material properties, using two suites of ground motions-one synthetic and one recorded motion suite. Results show that of the 10 IMs considered, peak ground acceleration (PGA) and spectral acceleration at the fundamental period are the most optimal for the synthetic motions, and that cumulative absolute velocity is also a close contender when using recorded motions. However, when hazard computability is considered, PGA is selected as the IM of choice. Previous studies have shown that spectrally based quantities perform better than PGA for a given structure, but the findings of this study indicate that when a portfolio of bridges is considered, PGA should be used. Copyright (C) 2007 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据