4.7 Article

Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata

期刊

EARTH-SCIENCE REVIEWS
卷 126, 期 -, 页码 275-299

出版社

ELSEVIER
DOI: 10.1016/j.earscirev.2013.08.016

关键词

Late Cretaceous; Paleoclimate; Western Interior Seaway; Songliao Basin; Correlation of terrestrial and marine deposits; Greenhouse world

资金

  1. ICDP
  2. IGCP
  3. National Basic Research Program of China (973 Project) [2012CB822000]

向作者/读者索取更多资源

Cretaceous climate data of the long-lived Cretaceous Songliao Basin (SB) in eastern Asia is correlated and compared with the Western Interior Seaway (WIS) on the northern American plate, in order to understand better the dynamics of the Earth's past 'greenhouse' climates. Nearly continuous Late Cretaceous terrestrial deposition in the Songliao Basin is represented by two cores totaling 2431 m in length. The Turonian-Maastrichtian age of the section is based on integrated stratigraphy, and is comparable in age with Upper Cretaceous strata in the WIS. Being consistent with global trends, the dynamic Late Cretaceous climates of both the SB and WIS gradually cooled from the warmest Albian-Cenomanian time to the end of the Maastrichtian with several intervening warm periods as did the global climate. However regional differences existed, the Songliao Basin climate was humid to semi-humid, warm temperate-subtropical and the Western Interior Seaway was in the humid, warm temperate zone and experienced only moderate climatic changes. The shifts of oxygen isotope data in the Songliao Basin were frequent and abrupt, whereas WIS records more gradual change affected mainly by fresh-water runoff mixing with southern Tethyan and northern Arctic waters. Sedimentary cycles of eccentricity, obliquity and precession bands are recorded in both the SB and WIS basins. The sedimentary cycles in the WIS and SB are interpreted to be related to variations of the wet/dry runoff cycles, which indicate that orbital forcing played an important role in global climate change in Late Cretaceous. The most favorable condition for organic carbon burial in both the SB and WIS basin was bottom water anoxia regardless of the cause of the anoxia. But the organic carbon burial rate was usually much higher in the Songliao Lake than in the WI epeiric sea suggesting that giant lakes may serve as important sinks of atmospheric CO2. In both basins organic-rich deposits formed during a rise in water level and incursion of saline waters. The integration of paleoclimate data from Cretaceous marine deposits and terrestrial sedimentary record will promote our understanding of the Cretaceous 'greenhouse' climate change and may provide insights for a future greenhouse world. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据