4.7 Review

The unreasonable effectiveness of stratigraphic and geomorphic experiments

期刊

EARTH-SCIENCE REVIEWS
卷 97, 期 1-4, 页码 1-43

出版社

ELSEVIER
DOI: 10.1016/j.earscirev.2009.05.003

关键词

stratigraphy; geomorphology; sedimentary geology; experiments

资金

  1. National Science Foundation [EAR-0120914, EAR-0639785]
  2. Leverhulme Trust

向作者/读者索取更多资源

The growth of quantitative analysis and prediction in Earth-surface science has been accompanied by growth in experimental stratigraphy and geomorphology. Experimenters have grown increasingly bold in targeting landscape elements from channel reaches up to the entire erosional networks and depositional basins, often using very small facilities. The experiments produce spatial structure and kinematics that, although imperfect, compare well with natural systems despite differences of spatial scale, time scale, material properties, and number of active processes. Experiments have been particularly useful in studying a wide range of forms of self-organized (autogenic) complexity that occur in morphodynamic systems. Autogenic dynamics creates much of the spatial structure we see in the landscape and in preserved strata, and is strongly associated with sediment storage and release. The observed consistency between experimental and field systems despite large differences in governing dimensionless numbers is what we mean by unreasonable effectiveness. We suggest that unreasonable experimental effectiveness arises from natural scale independence. We generalize existing ideas to relate internal similarity, in which a small part of a system is similar to the larger system, to external similarity, in which a small copy of a system is similar to the larger system. We propose that internal similarity implies external similarity, though not the converse. The external similarity of landscape experiments to natural landscapes suggests that natural scale independence may be even more characteristic of morphodynamics than it is of better studied cases such as turbulence. We urge a shift in emphasis in experimental stratigraphy and geomorphology away from classical dynamical scaling and towards a quantitative understanding of the origins and limits of scale independence. Other research areas with strong growth potential in experimental surface dynamics include physical-biotic interactions, cohesive effects, stochastic processes, the interplay of structural and geomorphic self-organization, extraction of quantitative process information from landscape and stratigraphic records, and closer interaction between experimentation and theory. (C) 2009 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据