4.5 Article

Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for the carbon cycle

期刊

EARTH SURFACE PROCESSES AND LANDFORMS
卷 38, 期 14, 页码 1662-1671

出版社

WILEY
DOI: 10.1002/esp.3404

关键词

wind erosion; aeolian dust; carbon cycle; soil nutrients; rangelands

资金

  1. University of Queensland
  2. Desert Knowledge Cooperative Research Centre
  3. ARS [813350, ARS-0423561] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon dioxide (CO2), to the atmosphere. Understanding the magnitude and mechanisms of SOC enrichment in dust emissions is necessary to evaluate the impact of wind erosion on the carbon cycle. This research examines the SOC content and enrichment of dust emissions measured using Big Spring Number Eight (BSNE) wind-vane samplers across five land types in the rangelands of western Queensland, Australia. Our results show that sandy soils and finer particulate quartz-rich soils are more efficient at SOC emission and have larger SOC dust enrichment than clay-rich aggregated soils. The SOC enrichment ratios of dusts originating from sites with sand-rich soil ranged from 21-419, while the mean enrichment ratio for dusts originating from the clay soil was 21. We hypothesize that stronger inter-particle bonds and the low grain density of the aggregated clay soil explain its reduced capacity to release SOC during saltation, relative to the particulate sandy soils. We also show that size-selective sorting of SOC during transport may lead to further enrichment of SOC dust emissions. Two dust samples from regional transport events were found to contain 15-20% SOC. These preliminary results provide impetus for additional research into dust SOC enrichment processes to elucidate the impact of wind erosion on SOC flux and reduce uncertainty about the role of soil erosion in the global carbon cycle. Copyright (c) 2013 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据