4.5 Article

Development of an automated method for continuous detection and quantification of cliff erosion events

期刊

EARTH SURFACE PROCESSES AND LANDFORMS
卷 36, 期 3, 页码 347-362

出版社

WILEY
DOI: 10.1002/esp.2045

关键词

automated thermal erosion pin system (ATEPS); coastal monitoring; microclimatology; cliff erosion; thermocouples; thermal regime; weathering processes

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Quebec Government

向作者/读者索取更多资源

Three intrusive systems of detection and quantification of coastal erosion events (using thermocouples and thermal pins) were developed and tested from 2005 to 2008 in different regions of the Gulf and maritime estuary of the St Lawrence (Quebec, Canada). The 3-m-long thermal pins inserted inside unconsolidated deposits allow the monitoring of erosion for a time period sometimes extending over several seasons. The thermocouple or thermocable method allows not only the instrumentation of unconsolidated deposits but also of rocky and cohesive substrate to a depth of 85 cm. An autonomous microclimatic station located near the experimental sites simultaneously samples temperature parameters, precipitation, snow cover, wind speed and direction as well as global radiation. The differential analysis of cliff thermal regime performed simultaneously with an analysis of air temperature makes it possible to determine the activation periods of coastal erosion processes. The results also make it possible to establish with precision the actual influence of rapid variations of certain climatic and microclimatic parameters (radiation, presence of snow cover, precipitation, etc.) on the physical state of surfaces and also on the activation of certain physical processes connected to coastal erosion events. The automated thermal erosion pin system (ATEPS) allows high temporal resolution (i.e. continuous) monitoring, enabling a real coupling of coastal erosion rates and climatic parameters. Preliminary results with the ATEPS system indicate that mild winter temperature and direct solar radiation are significant factors controlling cliff retreat rates. Moreover, the melting of segregation ice during the spring thaw contributed for more than 70% of cliff retreat against only 30% for frost shattering. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据