4.4 Article

Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake

期刊

EARTH PLANETS AND SPACE
卷 63, 期 7, 页码 885-889

出版社

SPRINGER HEIDELBERG
DOI: 10.5047/eps.2011.07.015

关键词

Acoustic wave; acoustic resonance; gravity wave; TEC; earthquake

资金

  1. Grants-in-Aid for Scientific Research [10J00356] Funding Source: KAKEN

向作者/读者索取更多资源

Numerical simulations are performed to simulate atmospheric perturbations observed at ionospheric heights just after the 2011 off the Pacific coast of Tohoku Earthquake. A time-dependent, two-dimensional, nonlinear, non-hydrostatic, compressible and neutral, numerical model is developed to reproduce the atmospheric perturbations. An impulsive upward surface motion is assumed as the source of the perturbations. Simulated atmospheric perturbations at 300-km altitude show remarkable agreement with oscillations observed in the ionospheric total electron content (TEC) when the source width is about 250 km. In the vicinity of the source, the acoustic resonance modes between the ground surface and the lower thermosphere are dominant. They have three dominant frequencies for the interval between 20 and 60 min after the impulsive input. The perturbation with the maximum amplitude has a frequency of 4.4 mHz. The other dominant modes have frequencies of 3.6 and 5.1 mHz. The beats between the dominant modes are also seen. In the distance, the gravity modes are dominant. The horizontal phase velocities are about 220 to 300 m/s, and the horizontal wavelengths are about 200 to 400 km. The good agreement between the simulation and the observations indicates that ionospheric oscillations generated by the earthquake are mainly due to the motion of the neutral atmosphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据