4.7 Article

The H2O content of granite embryos

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 395, 期 -, 页码 281-290

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2014.03.031

关键词

melt inclusions; NanoSIMS; granite H2O content; crustal melting; peritectic garnet; granite embryos

资金

  1. Italian Ministry of Education, University, Research [PRIN 2010TT22SC]
  2. University of Padua (Progetto di Ateneo [CPDA107188/10]
  3. Cesare, a research contract from the University of Padua
  4. a Ramon y Cajal research Ministerio de Ciencia e Innovacion of Spain [CGL2007-62992, CTM2005-08071-0O3-01, CSD2006-0041]
  5. CNRS
  6. Region Ile de France
  7. Ministere delegue a l'Enseignement superieur et a la Recherche
  8. MNHN

向作者/读者索取更多资源

Quantification of H2O contents of natural granites has been an on-going challenge owing to the extremely fugitive character of H2O during cooling and ascent of melts and magmas. Here we approach this problem by studying granites in their source region (i.e. the partially melted continental crust) and we present the first NanoSIMS analyses of anatectic melt inclusions (MI) hosted in peritectic phases of migmatites and granulites. These MI which totally crystallized upon slow cooling represent the embryos of the upper-crustal granites. The approach based on the combination of MI and NanoSIMS has been here tested on amphibolite-facies migmatites at Ronda (S Spain) that underwent fluid-present to fluid-absent melting at similar to 700 degrees C and similar to 5 kbar. Small (<= 5 mu m) crystallized MI trapped in garnet have been remelted using a piston-cylinder apparatus and they show leucogranitic compositions. We measure high and variable H2O contents (mean of 6.5 +/- 1.4 wt%) in these low-temperature, low-pressure granitic melts. We demonstrate that, when the entire population from the same host is considered, MI reveal the H2O content of melt in the specific volume of rock where the host garnet grew. Mean H2O values for the MI in different host crystals range from 5.4 to 9.1 wt%. This range is in rather good agreement with experimental models for granitic melts at the inferred P-T conditions. Our study documents for the first time the occurrence of H2O heterogeneities in natural granitic melts at the source region. These heterogeneities are interpreted to reflect the birth of granitic melts under conditions of mosaic equilibrium, where the distinct fractions of melt experience different buffering assemblages at the micro-scale, with concomitant differences in melt H2O content. These results confirm the need for small-scale geochemical studies on natural samples to improve our quantitative understanding of crustal melting and granite formation. The same approach adopted here can be applied to MI hosted in higher-temperature, granulite-facies rocks that represent the parents of many upper-crustal granites. This will result in a better understanding of formation and evolution of granitic magmas. (c) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据