4.7 Article

The chlorine abundance of Earth: Implications for a habitable planet

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 369, 期 -, 页码 71-77

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2013.03.005

关键词

Cl; chlorine; Earth composition; meteorite; planetary formation; core composition

资金

  1. NASA
  2. Alexander von Humboldt fellowship

向作者/读者索取更多资源

The Cl, Br and I contents of Earth are depleted by a factor of 10 relative to predicted values from chondritic and solar abundances. Possible explanations for the apparent discrepancy include (1) unrecognized sequestration of Cl in the core, (2) a much higher nebular volatility than normally presumed or (3) a preferential loss of the heavy halogens during planetary accretion. We tested the first assumption by conducting high pressure-temperature equilibration experiments between silicate and metal. At 15 GPa and 1900 degrees C, the DCl(metal-silicate) value for Cl is less than 0.007, indicating that the core is not a significant reservoir for Cl. The concentration of Cl in all chondritic classes follows a depletion trend very similar to that of Na and Mn, arguing against a low condensation temperature for Cl. Instead, we propose that the depletion of the heavy halogens is due to their unique hydrophilic behavior. Almost half of Earth's Cl and Br inventory resides in the ocean and evaporites, demonstrating the unique affinity for aqueous solutions for these elements. During planetary accretion, there would have been a strong sequestration of halogens into the crustal reservoir. 'Collisional erosion' during planetary accretion provides a mechanism that would uniquely strip the heavy halogens out of an accreting Earth. Had such loss not occurred, the salinity of the oceans would be 10 x the present value, and complex life would probably never have evolved. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据