4.7 Article

Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 327, 期 -, 页码 97-110

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2012.02.005

关键词

erosion; landscape evolution; specific stream power; cosmogenic radionuclides; paleoclimate; climate-tectonic feedback processes

资金

  1. DFG Leibniz Center for Earth Surface Process
  2. Climate Studies (DFG) at Potsdam University [STR373/19-19]
  3. Japan National Space Development Agency (NASDA)
  4. NASA [NNX08AG05G, EAR 0819874]
  5. NASA [101934, NNX08AG05G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

The tectonic and climatic boundary conditions of the broken foreland and the orogen interior of the southern Central Andes of northwestern Argentina cause strong contrasts in elevation, rainfall, and surface-process regimes. The climatic gradient in this region ranges from the wet, windward eastern flanks (similar to 2 m/yr rainfall) to progressively drier western basins and ranges (similar to 0.1 m/yr) bordering the arid Altiplano-Puna Plateau. In this study, we analyze the impact of spatiotemporal climatic gradients on surface erosion: First, we present 41 new catchment-mean erosion rates derived from cosmogenic nuclide inventories to document spatial erosion patterns. Second, we re-evaluate paleoclimatic records from the Calchaquies basin (66 W, 26 S), a large intermontane basin bordered by high (> 4.5 km) mountain ranges, to demonstrate temporal variations in erosion rates associated with changing climatic boundary conditions during the late Pleistocene and Holocene. Three key observations in this region emphasize the importance of climatic parameters on the efficiency of surface processes in space and time: (1) First-order spatial patterns of erosion rates can be explained by a simple specific stream power (SSP) approach. We explicitly account for discharge by routing high-resolution, satellite derived rainfall. This is important as the steep climatic gradient results in a highly non-linear relation between drainage area and discharge. This relation indicates that erosion rates (ER) scale with ER similar to SSP1.4 on cosmogenic-nuclide time scales. (2) We identify an intrinsic channel-slope behavior in different climatic compartments. Channel slopes in dry areas (< 0.25 m/yr rainfall) are slightly steeper than in wet areas (> 0.75 m/yr) with equal drainage areas, thus compensating lower amounts of discharge with steeper slopes. (3) Erosion rates can vary by an order of magnitude between presently dry (similar to 0.05 mm/yr) and well-defined late Pleistocene humid (similar to 0.5 mm/yr) conditions within an intemontane basin. Overall, we document a strong climatic impact on erosion rates and channel slopes. We suggest that rainfall reaching areas with steeper channel slopes in the orogen interior during wetter climate periods results in intensified sediment mass transport, which is primarily responsible for maintaining the balance between surface uplift, erosion, sediment routing and transient storage in the orogen. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据