4.7 Article

Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 357, 期 -, 页码 179-193

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2012.09.015

关键词

mantle volatiles; stable isotopes; mantle convection; diamonds; primordial heterogeneity

资金

  1. CNRS/INSU Dyeti programme

向作者/读者索取更多资源

Diamond, as the deepest sample available for study, provides a unique opportunity to sample and examine parts of the Earth's mantle not directly accessible. In order to provide further constraints on mantle convection and deep volatile cycles, we analysed nitrogen and carbon isotopes and nitrogen abundances in 133 diamonds from Juina (Brazil) and Kankan (Guinea). Host syngenetic inclusions within these diamonds indicate origins from the lithosphere, the asthenosphere-transition zone and the lower mantle. Juina and Kankan diamonds both display overall carbon isotopic compositions within the current upper mantle range but the delta C-13 signatures of diamonds from the asthenosphere-transition zone extend toward very negative and positive values, respectively. Two Kankan diamonds with both lower mantle and asthenosphere-transition zone inclusions (KK-45 and KK-83) are zoned in delta C-13, and have signatures consistent with multiple growth steps likely within both the lower mantle and the asthenosphere-transition zone illustrating the transfer of material through the 670 km seismic discontinuity. At a given locality, diamonds from the upper and the lower mantle show similar delta N-15 distributions with coinciding modes within the range defined by typical upper mantle samples, as one might expect for a well stirred reservoir resulting from whole mantle convection. Kankan diamonds KK-11 (lower mantle), KK-21 and KK-92 (both lithospheric) display the lowest delta N-15 values (-24.9%, -39.4% and -30.4%) ever measured in terrestrial samples, which we interpret as reflecting primordial heterogeneity preserved in an imperfectly mixed convective mantle. Our diamond data thus provide support for deeply rooted convection cells, together with the preservation of primordial volatiles in an imperfectly mixed convecting mantle, thereby reconciling the conflicting interpretations regarding mantle homogeneity derived from geochemical and geophysical studies. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据