4.7 Article

Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 349, 期 -, 页码 186-197

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2012.07.007

关键词

SE Tibetan plateau; crustal anisotropy; lower crustal flow; depth varying deformation

资金

  1. NSF [EAR-063566]
  2. Fundamental Research Funds for the Central Universities of Central South University

向作者/读者索取更多资源

We analyze a large amount of receiver function data recorded by regional seismic networks of the China Earthquake Administration to estimate crustal structure and deformation beneath the southeast margin of the Tibetan plateau and its surrounding areas. We develop a comprehensive analysis method that facilitates robust extraction of azimuthal seismic anisotropy from receiver function data. The method includes an estimate of fast polarization direction and splitting time by a joint analysis of radial and transverse receiver function data, and an evaluation of measurement reliability by statistical and harmonic analysis. We find significant seismic anisotropy with a splitting time of 0.5-0.9 s beneath the SE margin of the Tibetan plateau. Both the splitting time and fast polarization direction are comparable to those estimated from SKS/SKKS data, suggesting that crustal anisotropy is the main cause of shear wave splitting of the SKS/SKKS wave. This also suggests that deformation in the upper mantle is either weak or predominantly vertical, and is obviously different from the one in the crust. A vertical flow in the upper mantle, combined with the observation of a thin lithosphere beneath the study area, leads to the inference that part of the mantle lithosphere may have been removed and is descending into deep mantle. Stations located in the surrounding areas, on the other hand, exhibit very little to no crustal anisotropy. The estimated Moho depth and Vp/Vs ratio also show a distinct difference between the SE Tibetan plateau and the surrounding regions. Stations on the Tibetan plateau have a Vp/Vs ratio of similar to 1.79, which is substantially higher than those measured at the Yunnan-Guizhou (Yungui) plateau (similar to 1.69). Our observations here are consistent with the scenario that the SE Tibet has been built by lower crustal flow. They also suggest that the mantle lithosphere beneath the margin may have been mechanically decoupled from the upper crust. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据