4.7 Article

Predicting radar attenuation within the Antarctic ice sheet

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 359, 期 -, 页码 173-183

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2012.10.018

关键词

Antarctic ice sheet; radar remote sensing; englacial attenuation; subglacial environment; thermo-mechanical modeling

资金

  1. Center for Ice, Climate, Ecosystems at the Norwegian Polar Institute

向作者/读者索取更多资源

To better understand the ability of ice-penetrating radar to diagnose the subglacial environment from bed-returned power, we model the englacial radar attenuation of Antarctic ice. First, we use a one-dimensional thermo-mechanical model to evaluate the sensitivity of the depth-averaged attenuation rates to ice temperature as a function of surface accumulation rate, geothermal flux, and ice thickness. We find that attenuation is most sensitive to variations in geothermal flux and accumulation rate when the bed temperature is close to the pressure-melting point. But even if geothermal flux and accumulation rate remain fixed, attenuation can easily vary with ice thickness. Such high sensitivities show that one should not assume a uniform attenuation rate in the radar data analysis. Then, using ensembles of modeled ice temperatures with different boundary conditions, we generate multiple attenuation predictions for the Antarctic ice sheet and evaluate the resulting uncertainties. The largest contributor to uncertainty in these predictions is the geothermal flux. This uncertainty is localized within the deeper half of the ice sheet. By combining these temperature ensembles with ice-core chemistry data, we show that the sea salt adds little to the attenuation, but the contribution from acids accounts for similar to 29% (inland) to similar to 53% (coast) of the total attenuation. We conclude that improving radar diagnosis of the subglacial environment using bed-returned power requires both (1) better data-interpretation algorithms that account for attenuation variations and (2) better constraints of geothermal flux and bulk chemistry. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据