4.7 Article

Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 311, 期 1-2, 页码 93-100

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2011.08.047

关键词

carbonaceous chondrites; bulk compositions (of planets); oxygen isotopes; Ti isotopes; Cr isotopes; Fe isotopes

资金

  1. NASA [NNX09AE31G, NNX09AM65G]
  2. NASA [119921, NNX09AM65G, 113001, NNX09AE31G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Plots such as epsilon Cr-54 vs. epsilon Ti-50 and epsilon Cr-54 vs. Delta O-17 reveal a fundamental dichotomy among planetary materials. The carbonaceous chondrites, by virtue of high epsilon Ti-50 and high epsilon Ni-62, as well as, especially for any given Delta O-17, high epsilon Cr-54, are separated by a wide margin from all other materials. The significance of the bimodality is further manifested by several types of meteorites with petrological-geochemical characteristics that suggest membership in the opposite category from the true pedigree as revealed by the stable isotopes. Ureilites, for example, despite having diversely low Delta O-17 and about the same average carbon content as the most C-rich carbonaceous chondrite, have clear stable-isotopic signatures of noncarbonaceous pedigree. The striking bimodality on the epsilon Cr-54 vs. epsilon Ti-50 and epsilon Cr-54 vs. Delta O-17 diagrams suggests that the highest taxonomic division in meteorite/planetary classification should be between carbonaceous and noncarbonaceous materials. The bimodality may be an extreme manifestation of the effects of episodic accretion of early solids in the protoplanetary nebula. However, an alternative, admittedly speculative, explanation is that the bimodality corresponds to a division between materials that originally accreted in the outer solar system (carbonaceous) and materials that accreted in the inner solar system (noncarbonaceous). In any event, both the Earth and Mars plot squarely within the noncarbonaceous composition-space. Applying the lever rule to putative mixing lines on the epsilon Ti-50 vs. epsilon Cr-54 and Delta O-17 vs. epsilon Cr-54 diagrams, the carbonaceous/(carbonaceous + noncarbonaceous) mixing ratio C/(C + NC) is most likely close to (very roughly) 24% for Earth and 9% for Mars. Estimated upper limits for C/(C + NC) are 32% for Earth and 18% for Mars. However, the uncertainties are such that isotopic data do not require or even significantly suggest that Earth has higher C/(C + NC) than Mars. Among known chondrite groups, EH yields a relatively close fit to the stable-isotopic composition of Earth. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据