4.7 Article

Low-temperature mechanism for formation of coarse crystalline hematite through nanoparticle aggregation

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 298, 期 3-4, 页码 377-384

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2010.08.014

关键词

Mars; hematite; nanoparticles

资金

  1. NASA
  2. University of Oklahoma

向作者/读者索取更多资源

We have discovered a low-temperature mechanism for the formation of coarse specular hematite grains. Either freezing and subsequent thawing or cryodesiccation of aqueous nanoparticle suspensions under confinement leads to aggregation of hematite platelets with initial diameters of similar to 10 nm into domains <100 nm in diameter. Crystallographic alignment of particles in the (001) basal plane only occurs on the scale of the 50-100 nm domains. is absent for air-dried grains, and increases for freeze-thawed and freeze-dried samples. Stacking of the domains accommodates curvature at the microscale, leading to final grain sizes greater than 1 mm with curved but smooth surfaces reflective to visible light. Confinement of freezing suspensions increases ordering of aggregates. No spherules were produced; however, thermal emission spectra idle nanoparticle aggregates are consistent with coarse crystalline spectra from Mars TIR spectra of air-dried, freeze-thawed, and cryodesiccated samples are similar, suggesting that the crystallographic alignment observed at the nanoscale is not responsible for the lack of 390 cm(-1) feature. Aqueous alteration of Fe-bearing sulfates has been demonstrated to form hematite nanoparticles in systems analogous to Meridiani Planum. Evaporation and aggregation of resulting nanoparticles is consistent with the context of low-temperature playa-groundwater models, while freezing and/or cryodesiccation are consistent with models of low-temperature ice-hosted weathering Additionally, this new mechanism for specular hematite formation may lead to re-evaluation and re-interpretation of coarse hematite formation throughout Earth history. (c) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据