4.7 Article

Phase relationships of the Fe-FeS system in conditions up to the Earth's outer core

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 294, 期 1-2, 页码 94-100

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2010.03.011

关键词

Fe-Fe3S system; inner core; high pressure; high temperature; laser-heated diamond anvil cell; in situ X-ray diffraction

向作者/读者索取更多资源

In situ X-ray diffraction experiments in the Fe-FeS system were performed up to 220 GPa and 3300 K using a laser-heated diamond anvil cell. Fe3S and epsilon-Fe coexisted stably up to 220 GPa and 3300 K, and thus, Fe3S is likely to be the stable S-bearing iron alloy under the Earth's core conditions. The solid iron (E-Fe) also contained 7.6(0.8) at.% of sulfur at 86 GPa and 2200 K. The amount of sulfur in the solid iron increased with increasing pressure at the eutectic temperatures. If the sulfur content obtained in this study is extrapolated to the conditions at the inner core, all the sulfur in the solid inner core can be stored in epsilon-Fe. The eutectic composition becomes nonsensitive to pressure and seems to be constant around 20 at.% of sulfur at pressures above 40 GPa. The pressure gradient of the melting curve of the Fe-FeS system is 13.4 (0.7) K/GPa. Based on our results of melting relationship, the temperature at the core-mantle boundary should be greater than 2850(100) K, assuming that sulfur is the only light element in the Earth's liquid outer core. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据