4.7 Article

Seismological and experimental constraints on metastable phase transformations and rheology of the Mariana slab

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 287, 期 1-2, 页码 12-23

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2009.07.028

关键词

subducting slabs; metastable olivine; 660 km seismic discontinuity; water; rheology

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology, Japan [19684019, 18540424, 16075207]
  2. Grants-in-Aid for Scientific Research [16075207, 19684019, 18540424] Funding Source: KAKEN

向作者/读者索取更多资源

A wedge with a low seismic wave velocity implying the presence of metastable olivine and the depression of the 660 km seismic discontinuity have been observed inside the Mariana slab. Based on these seismic observations and numerical calculation of thermal structures of the slab, we suggest that the phase transformations from olivine to ringwoodite, and from ringwoodite to perovskite + ferropericlase (the post-spinel transformation) occur at the depth of 630 km and 550 degrees C, and at 690 km and 700 degrees C, respectively, in the central coldest part of the Mariana slab. Combining this information with recent experimental kinetic data, we constrain the details of non-equilibrium phase transformations and rheology of the Mariana slab. The observed depth of the metastable olivine inside the Mariana slab can be explained by growth-controlled olivine-ringwoodite transformation under relatively dry condition such as the water content of about 150 wt. ppm H2O. On the other hand, nucleation process controls the depth of the post-spinel transformation in the Mariana slab, and therefore the observed depressions of the 660 km discontinuity should depend on both the overpressure needed for the nucleation and the negative Clapeyron slope for the transformation. When the overpressure for the nucleation is 0.5 GPa, the observed depressions can be explained by the Clapeyron slope of -0.7 MPa/K. Grain-size evolution and viscosity structures in the Mariana slab are estimated based on these metastable phase transformations. The slab weakening due to the grain-size reduction is limited in about 40 km in width below the metastable olivine wedge at the depths from 630 to 690 km, whereas the width of the weakened portion of the slab increases to more than 120 km at deeper than the 690 km depth after the post-spinel transformation. These viscosity structures are consistent with the behaviors of the Mariana slab estimated from seismic tomography: the slab vertically descends to the bottom of the transition zone, and substantially deforms and thickens at the top of the lower mantle. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据