4.7 Article

Mica, deformation fabrics and the seismic properties of the continental crust

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 288, 期 1-2, 页码 320-328

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2009.09.035

关键词

mica; seismic anisotropy; continental tectonics; S-C fabrics; CPO; EBSD

向作者/读者索取更多资源

Seismic anisotropy originating within the continental crust is used to determine kinematic flow lines within active mountain belts and is widely attributed to regionally aligned mica. However, naturally deformed micaceous rocks commonly show composite (e.g. S-C) fabrics. It is necessary therefore to understand how both varying mica content and differing intensities of multiple foliations impact on seismic interpretations in terms of deformation fields. An outcrop analogue for granitic mid-crustal deformed zones is used here to calibrate the seismic response against both parameters. Seismic responses are modelled using crystallographic preferred orientations for polymineralic, micaceous granitic gneisses, measured using Electron Back-Scatter Diffraction. The sample results are generalised by modelling the effects of variations in modal composition and the relative importance of deformation fabrics of variable orientation, so-called rock and fabric recipes. The maximum P- and S-anisotropy are calculated at 16.6% and 23.9% for single-foliation gneisses but for mixed (i.e. S-C) foliation gneisses these values reduce to 5.8% and 7.5% respectively. Furthermore, mixtures of multiple foliations generate significant variations in the geometry of the seismic anisotropy. This effect, coupled with the geographical orientation of fabrics in nature. can generate substantial variations in the orientation and magnitude of seismic anisotropy (especially for shear waves) as measured for the continental crust using existing receiver function and teleseismic near-vertical incidence methods. Thus, maps of seismic anisotropy varying with depth in deforming continents need not imply necessarily depth-varying deformation kinematics and tectonic decoupling. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据