4.7 Article

Incremental growth of normal faults: Insights from a laser-equipped analog experiment

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 273, 期 3-4, 页码 299-311

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2008.06.042

关键词

fault growth; analog modeling; normal faults; slip profiles; slip increments

资金

  1. INSU-CNRS Dyeti
  2. French ANR [QUAKonSCARPS, ANR-06-CATT-008-01, ANR-06-CATT-008-03]

向作者/读者索取更多资源

We conducted a laser-equipped analog experiment aimed at quasi-continuously monitoring the growth of a dense population of normal faults in homogeneous conditions. To further understand the way geological faults progressively gain in slip and length as they accumulate more strain, we measured with great precision the incremental slip and length changes that the analog faults sustain as they grow. These measurements show that the analog faults share common features with the natural ones. In particular, during their growth, the faults develop and maintain cumulative slip profiles that are generally triangular and asymmetric. The growth takes place through two distinct phases: an initial, short period of rapid lateral lengthening, followed by a longer phase of slip accumulation with little or no lengthening. The incremental slip is found to be highly variable in both space (along the faults) and time, resulting in variable slip rates. In particular, 'short- and long-term' slip rates are markedly different. We also find that slip measurements at local points on fault traces do not contain clear information on the slip increment repeat mode. Finally, while the fault growth process is highly heterogeneous when considered at the scale of a few slip events, it appears homogeneous and self-similar at longer time scales which integrate many slip increments. This is likely to be the result of a feedback between stress heterogeneities and slip development. The long-term scale homogeneity also implies that the long-term faulting process is primarily insensitive to the short-term heterogeneities that are rapidly smoothed or redistributed. We propose a new conceptual scenario of fault growth that integrates the above observations and we suggest that faults grow in a bimodal way as a result of a self-driven and self-sustaining process. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据