4.7 Article

The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 276, 期 1-2, 页码 187-197

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2008.09.020

关键词

magnesium isotopes; Iceland; chemical weathering; physical weathering; secondary mineral formation/stability

向作者/读者索取更多资源

This study presents major-, trace-element and Mg isotope data for the dissolved load and suspended particulates of Icelandic rivers draining dominantly basaltic catchments, including both glacier-fed and direct-runoff rivers. These samples provide the opportunity to understand the behaviour of Mg isotopes during chemical weathering, where variations due to lithology are not extant. Given the significant role of Mg in the carbon cycle, Such variations may provide important information on the regulation of Earth's climate. Hydrothermal waters, groundwater, precipitation (glacial ice), basalt glass, olivine and representative soils have also been analysed. The dissolved load shows a wide range of ( delta Mg-26 compositions, compared to the parent basaltic glass (delta Mg-26 =-0.29%.), ranging from -0.96 to +0.64%., while precipitation and hydrothermal waters possess delta Mg-26 values of -0.83%. and +0.85%., respectively, with lower Mg concentrations than the dissolved load. Biomass activity in vegetation and organic material in soils and rivers (colloids) appear to have little effect on the Mg isotope compositions. Rather, the data suggest that Mg elemental and isotopic variations are largely controlled by the formation and stability of secondary phases in response to differing hydrological conditions. In some samples seawater, in the form of direct precipitation or glacial runoff, also appears to be an important source of Mg. Glacier-fed rivers, groundwaters, and some direct-runoff rivers, with a high pH, have higher delta Mg-26 than basalt, which is most likely due to the incorporation of light Mg isotopes in secondary minerals. In contrast, those direct-runoff rivers which have a relatively low pH, have low delta Mg-26 (relative to basalt), consistent with preferential incorporation of heavy Mg isotopes into secondary phases, although it is not possible to rule out some contribution from precipitation. Riverine suspended particulates are depleted in mobile elements, and have delta Mg-26 compositions values both higher and lower than unweathered basalt. in the glacier-fed and direct-runoff rivers where the delta Mg-26 of the dissolved phase is heavy, due to the formation of secondary phases, the suspended load is light, because it contains more of those phases. The opposite is true for the remainder of the direct-runoff rivers which have low pH. This could be due to dissolution of secondary minerals, enriched in light Mg, which are unstable at low pH, or the formation of new secondary phases. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据