4.7 Article

Transient ocean warming and shifts in carbon reservoirs during the early Danian

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 265, 期 3-4, 页码 600-615

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2007.10.040

关键词

paleogene; paleoclimate; isotope excursion; carbon cycle; Ocean Drilling Program

向作者/读者索取更多资源

A long-standing question in Paleogene climate concerns the frequency and mechanism of transient greenhouse gas-driven climate shifts (hyperthermals). The discovery of the greenhouse gas-driven Paleocene-Eocene Thermal Maximum (PETM; similar to 55 Ma) has spawned a search for analogous events in other parts of the Paleogene record. On the basis of high-resolution bulk sediment and foraminiferal stable isotope analyses performed on three lower Danian sections of the Atlantic Ocean, we report the discovery of a possible greenhouse gas-driven climatic event in the earliest Paleogene. This event-that we term the Dan-C2 event-is characterized by a conspicuous double negative excursion in delta C-13 and delta O-18, associated with a double spike in increased clay content and decreased carbonate content. This suggests a double period of transient greenhouse gas-driven warming and dissolution of carbonates on the seafloor analogous to the PETM in the early Paleocene at similar to 65.2 Ma. However, the shape of the two negative carbon isotope excursions that make up the Dan-C2 event is different from the PETM carbon isotope profile. In the Dan-C2 event, these excursions are fairly symmetrical and each persisted for about similar to 40 ky and are separated by a short plateau that brings the combined duration to similar to 100 ky, suggesting a possible orbital control on the event. Because of the absence of a long recovery phase, we interpret the Dan-C2 event to have been associated with a redistribution of carbon that was already in the biosphere. The Dan-C2 event and other early Paleogene hyperthermals such as the short-lived early Eocene ELMO event may reflect amplification of a regular cycle in the size and productivity of the marine biosphere and the balance between burial of organic and carbonate carbon. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据