4.7 Article

Source depletion and extent of melting in the Tongan sub-arc mantle

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 273, 期 3-4, 页码 279-288

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2008.06.040

关键词

HFSE; depletion; sub-arc; back-arc; hydrous; melting

资金

  1. ARC LIFE
  2. DEST Systematic Infrastructure Grants
  3. Macquarie University and Industry
  4. Alexander von Humboldt Foundation

向作者/读者索取更多资源

The fluid immobile High Field Strength Elements (HFSE) Nb and Ta can be used to distinguish between the effects of variable extents of melting and prior source depletion of the Tongan sub-arc mantle. Melting of spinel Iherzolite beneath the Lau Basin back-arc spreading centres has the ability to fractionate Nb from Ta due to the greater compatibility of the latter in clinopyroxene. The identified spatial variation in plate velocities and separation of melt extraction zones, combined with extremely depleted lavas make Tonga an ideal setting in which to test models for arc melt generation and the role of back-arc magmatism. We present new data acquired by laser ablation-ICPMS of fused sample glasses produced without the use of a melt fluxing agent. The results show an arc trend towards strongly sub-chondritic Nb/Ta (<17) with values as low as 7.2. Melting models show that large degree melts of depleted MORB mantle fail to reproduce the observed Nb/Ta. Alternatively, incorporation of residual back-arc mantle that has undergone less than 1% melting into the sub-arc melting regime reproduces arc values. However, the extent of partial melting required to produce the composition of the Lau Basin back-arc basalts averages 7%. This apparent discrepancy can be explained if only the lowermost 4 km of the residua from the mantle melt column beneath the back-arc is added to the source of arc magmas. We have identified that the degree of arc/back-arc coupling displayed in the rock record provides an index of the depth of hydrous melting beneath the arc. In this case, this would imply a depth of similar to 75 km for generation of arc magmas, indicating that hydrous melting in the mantle wedge is triggered by the breakdown of hydrous phases in the subducting slab. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据