4.7 Article

Stratified seismic anisotropy reveals past and present deformation beneath the East-central United States

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 274, 期 3-4, 页码 489-498

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2008.07.058

关键词

seismic anisotropy; surface wave; stratified anisotropy; shear-wave anisotropy; lithospheric deformation

向作者/读者索取更多资源

Evolution of continental lithosphere during orogenies and the following periods of relative stability is poorly understood, largely because of the lack of relevant observational constraints. Measurements of seismic anisotropy provide such constraints, but due to limitations in the resolving power of available data sets and, more generally, of various data types, detailed mapping of lithospheric anisotropy has remained elusive. Here we apply surface-wave array analysis to data from the East-central U.S. and determine the layering of azimuthal anisotropy beneath the Grenville-Appalachian orogen in the entire lithosphere-asthenosphere depth range. Combined measurements of Rayleigh-wave phase velocities along 60 interstation paths constrain phase-velocity maps with statistically significant anisotropy. Distinct anisotropy patterns in three different period ranges point to the existence of three distinct layers beneath the orogen, with different anisotropic fabric within each. We invert phase-velocity maps and, alternatively, pairs of selected measured dispersion curves for anisotropic shear-velocity structure. The results confirm that three anisotropic layers with different fabric within each are present, two in the lithosphere (30-70 km; 70-150 km depths) and another ill the asthenosphere beneath (> 150 km). Directions of fast wave propagation in the upper lithosphere are parallel to the Grenville and Appalachian fronts, suggesting that the region-scale anisotropy pattern reflects the pervasive deformation of the lower crust and uppermost mantle during the continental collisions. The fast-propagation azimuth within the lower lithosphere is different, parallel to the NNW direction of North America's motion after the orogeny (similar to 160-125 Ma). This suggests that the lithosphere. 70-km thick by the end of the Appalachian orogeny, gradually thickened to the present 150-km while inheriting the fabric from the sheared asthenosphere below, as the plate moved NNW. Below 150 km, the fast-propagation direction is parallel to the present plate motion, indicating fabric due to recent asthenospheric flow. Anisotropy in narrower depth ranges beneath the region has been sampled previously. Published results (from observations of P-n and SKS and waveform tomography) can be accounted for and reconciled by the three-layered model of anisotropy for the lithosphere-asthenosphere depth range constrained in this study. In particular, the anisotropy we detect in the asthenosphere can account for the magnitude of SKS-wave splitting, with the fast wave-propagation directions inferred from SKS and surface-wave data also consistent, both parallel to the current plate motion. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据