4.7 Article

Constraining denitrification in permeable wave-influenced marine sediment using linked hydrodynamic and biogeochemical modeling

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 275, 期 1-2, 页码 127-137

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2008.08.016

关键词

permeable sediment; oscillatory ripples; computational fluid dynamics; pore water; denitrification; reactive transport

资金

  1. Coastal Ocean Institute at the Woods Hole Oceanographic Institution
  2. Office of Naval Research [N00014-06-10329]

向作者/读者索取更多资源

Permeable marine sediments are ubiquitous complex environments, the biogeochemistry of which are strongly coupled to hydrodynamic process above and within the sediment. The biogeochemical processes in these settings have global scale implications but are poorly understood and challenging to quantify. We present the first simulation of linked turbulent-oscillatory flow of the water column, porous media flow, and solute transport in the sediment with oxygen consumption, nitrification, denitrification, and ammonification, informed by field- and/or experimentally-derived parameters. Nitrification and denitrification were significantly impacted by advective pore water exchange between the sediment and the water column. Denitrification rates showed a maximum at intermediate permeabilities, and were negligible at high permeabilities. Denitrification rates were low, with only similar to 15% of total N mineralized being denitrified, although this may be increased temporarily following sediment resuspension events. Our model-estimated denitrification rates are about half of previous estimates which do not consider solute advection through the sediment. Given the critical role of sediment permeability, topography, and bottom currents in controlling denitrification rates, an improved knowledge of these factors is vital for obtaining better estimates of denitrification taking place on shelf sediment. Broad application of our approach to myriad conditions will lead to improved predictive capacity, better informed experimental and sampling design, and more holistic understanding of the biogeochemistry of permeable sediment. (c) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据