4.5 Article

Prediction of Energy and Exergy of Carrot Cubes in a Fluidized Bed Dryer by Artificial Neural Networks

期刊

DRYING TECHNOLOGY
卷 29, 期 3, 页码 295-307

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07373937.2010.494237

关键词

Artificial neural network; Carrot cubes; Energy; Exergy; Fluidized bed drying

资金

  1. University of Tehran, Iran

向作者/读者索取更多资源

In this study both static and recurrent artificial neural networks (ANNs) were used to predict the energy and exergy of carrot cubes during fluidized bed drying. Drying experiments were conducted at air temperatures of 50, 60, and 70 degrees C; bed depths of 3, 6, and 9 cm; and square-cubed carrot dimensions of 4, 7, and 10 mm. Five hundred eighteen patterns, obtained from experiments, were used to develop the ANN models. Initially, a static ANN was applied to correlate the outputs (energy and exergy of carrot cubes) to the four exogenous inputs (drying time, drying air temperature, carrot cube size, and bed depth). In the recurrent ANNs, in addition to the four exogenous inputs, two state inputs and outputs (energy and exergy of carrot cubes) were used. To find optimum ANN models, various numbers of hidden neurons were investigated. The energy and exergy of carrot cubes were predicted with R-2 values of greater than 0.95 and 0.97 using static and recurrent ANNs, respectively. Accordingly, the optimal recurrent model could be utilized for determining the appropriate drying conditions of carrot cubes to reach the optimal energy efficiency in fluidized bed drying.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据