4.7 Review

Role of mTOR in anticancer drug resistance: Perspectives for improved drug treatment

期刊

DRUG RESISTANCE UPDATES
卷 11, 期 3, 页码 63-76

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.drup.2008.03.001

关键词

mTOR; drug resistance; p70S6K1; PI3K; AKT; MAP kinase; VEGF; CCI-779; RAD001 (everolimus); AP-23573; neurolibromatosis 1

资金

  1. NCI NIH HHS [R01 CA109460, R03 CA123675, CA109460, CA123675, R01 CA109460-03, R03 CA123675-02] Funding Source: Medline
  2. NCRR NIH HHS [P20 RR016440-050001, P20 RR016440] Funding Source: Medline

向作者/读者索取更多资源

The mammalian target of rapamycin (mTOR) pathway plays a central role in regulating protein synthesis, ribosomal protein translation, and cap-dependent translation. Deregulations in mTOR signaling are frequently associated with tumorigenesis, angiogenesis, tumor growth and metastasis. This review highlights the role of the mTOR in anticancer drug resistance. We discuss the network of signaling pathways in which the mTOR kinase is involved, including the structure and activation of the mTOR complex and the pathways upstream and downstream of mTOR as well as other molecular interactions of mTOR. Major upstream signaling components in control of mTOR activity are PI3K/PTEN/AKT and Ras/Raf/MEK/ERK pathways. We discuss the central role of mTOR in mediating the translation of mRNAs of proteins related to cell cycle progression, those involved in cell survival such as c-myc, hypoxia inducible factor lot (HIF-1 alpha) and vascular endothelial growth factor (VEGF), cyclin A, cyclin dependent kinases (cdk1/2), cdk inhibitors (p21(Cip1) and p27(Kip1)), retinoblastoma (Rb) protein, and RNA polymerases I and III. We then discuss the potential therapeutic opportunities for using mTOR inhibitors rapamycin, CCI-779, RAD001, and AP-23573 in cancer therapy as single agents or in combinations to reverse drug resistance. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据