4.4 Article

Atazanavir Metabolism According to CYP3A5 Status: An In Vitro-In Vivo Assessment

期刊

DRUG METABOLISM AND DISPOSITION
卷 39, 期 3, 页码 522-527

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.110.036178

关键词

-

资金

  1. National Institutes of Health National Center for Research Resources through the Medicinal Chemistry Core facility via the Colorado Clinical and Translational Sciences Institute [5UL1-RR025780]
  2. Department of Pharmaceutical Sciences

向作者/读者索取更多资源

The current study was a follow-up to an in vivo study in which atazanavir oral clearance was shown to be dependent on genetically determined CYP3A5 expression status, but only in non-African Americans. The aim of this study was to identify atazanavir metabolites generated by CYP3A5 and to evaluate this metabolite pattern in the African-American versus non-African-American CYP3A5 expressors from the previous study. First, the in vitro metabolism of atazanavir was evaluated using human liver microsomes (HLM) and CYP3A4 and CYP3A5 isoforms. Second, the metabolite pattern generated by CYP3A5 was evaluated in human plasma samples from the previous study. Atazanavir metabolites were analyzed using liquid chromatography-tandem mass spectrometry methods. Metabolite areas under the time-concentration curves (AUCs) were normalized to atazanavir AUC to generate an AUC ratio. Sixteen metabolites were observed in human liver microsomal incubations representing five phase I biotransformation pathways. Mono-oxidation products (M1 and M2) were formed by CYP3A5 at a faster rate than CYP3A4 by 32- and 2.6-fold, respectively. This finding was replicated in HLM from a genetically determined CYP3A5 expressor versus nonexpressor. In the in vivo samples, the M1 and M2 AUC ratios were approximately 2-fold higher in CYP3A5 expressors versus nonexpressors (P < 0.05), and the difference was similar in African Americans and non-African Americans. Thus, CYP3A5 produced a unique metabolite signature for atazanavir in vitro and in vivo, independent of race. Therefore, other pharmacological factors are likely to explain the apparent lack of effect of genetically determined CYP3A5 expressor status on atazanavir oral clearance in African Americans from the previous study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据