4.4 Article

Two allelic variants of aldo-keto reductase 1A1 exhibit reduced in vitro metabolism of daunorubicin

期刊

DRUG METABOLISM AND DISPOSITION
卷 36, 期 5, 页码 904-910

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.107.018895

关键词

-

向作者/读者索取更多资源

Aldo-keto reductases (AKRs) are a class of NADPH-dependent oxidoreductases that have been linked to metabolism of the anthracyclines doxorubicin (DOX) and daunorubicin (DAUN). Although widely used, cardiotoxicity continues to be a serious side effect that may be linked to metabolites or reactive intermediates generated in their metabolism. In this study we examine the little known effects of nonsynonymous single nucleotide polymorphisms of human AKR1A1 on the metabolism of these drugs to their alcohol metabolites. Expressed and purified from bacteria using affinity chromatography, the AKR1A1 protein with a single histidine (6x-His) tag exhibited the greatest activity using two test substrates: p-nitrobenzaldehyde (5.09 +/- 0.16 mu mol/min/mg of purified protein) and DL-glyceraldehyde ( 1.24 +/- 0.17 mu mol/min/mg). These activities are in agreement with published literature values of nontagged human AKR1A1. The 6x-His-tagged AKR1A1 wild type and allelic variants, E55D and N52S, were subsequently examined for metabolic activity using DAUN and DOX. The tagged variants showed significantly reduced activities (1.10 +/- 0.42 and 0.72 +/- 0.47 nmol of daunorubicinol (DAUNol) formed/min/mg of purified protein for E55D and N52S, respectively) compared with the wild type (2.34 +/- 0.71 nmol/min/mg). The wild type and E55D variant metabolized DOX to doxorubicinol (DOXol); however, the levels fell below the limit of quantitation ( 25 nM). The N52S variant yielded no detectable DOXol. A kinetic analysis of the DAUN reductase activities revealed that both amino acid substitutions lead to reduced substrate affinity, measured as significant increases in the measured Km for the reduction reaction by AKR1A1. Hence, it is possible that these allelic variants can act as genetic biomarkers for the clinical development of DAUN-induced cardiotoxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据