4.4 Article

Metabolism of Quetiapine by CYP3A4 and CYP3A5 in Presence or Absence of Cytochrome B5

期刊

DRUG METABOLISM AND DISPOSITION
卷 37, 期 2, 页码 254-258

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.108.023291

关键词

-

向作者/读者索取更多资源

The antipsychotic drug quetiapine is extensively metabolized by CYP3A4, but little is known about the possible influence of the polymorphic enzyme CYP3A5. This in vitro study investigated the relative importance of CYP3A4 and CYP3A5 in the metabolism of quetiapine and compared the metabolic pattern by the two enzymes, in the presence or absence of cytochrome b(5). Intrinsic clearance (CLint) of quetiapine was determined by the substrate depletion approach in CYP3A4 and CYP3A5 insect cell microsomes with or without coexpressed cytochrome b(5). Formation of the metabolites quetiapine sulfoxide, N-desalkylquetiapine, O-desalkylquetiapine, and 7-hydroxyquetiapine by CYP3A4 and CYP3A5 were compared in the different microsomal preparations. CLint of quetiapine by CYP3A5 was less than 35% relative to CYP3A4. CLint was higher (3-fold) in CYP3A4 microsomes without cytochrome b(5) compared with CYP3A4 microsomes with coexpressed cytochrome b(5), whereas in CYP3A5 microsomes CLint was similar for both microsomal preparations. Metabolism of quetiapine by CYP3A5 revealed a different metabolic pattern compared with CYP3A4. The results indicated that O-desalkylquetiapine constituted a higher proportion of the formed metabolites by CYP3A5 compared with CYP3A4. In conclusion, the present study indicates that CYP3A5 is of minor importance for the overall metabolism of quetiapine, regardless of the presence of cytochrome b(5). However, a different metabolic pattern by CYP3A5 compared with CYP3A4 could possibly result in different pharmacological and/or toxicological effects of quetiapine in patients expressing CYP3A5.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据