4.6 Article

Dispersion Corrections Improve the Accuracy of Both Noncovalent and Covalent Interactions Energies Predicted by a Density-Functional Theory Approximation

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 119, 期 25, 页码 6703-6713

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.5b02809

关键词

-

资金

  1. University of British Columbia
  2. NSERC

向作者/读者索取更多资源

The use of pairwise dispersion corrections together with dispersion-correcting potentials (DCPs) offers a computationally low-cost approach to improving the performance of a density-functional theory based method with respect to the prediction of important chemical properties. In this work, we develop DCPs for the C, H, N, and O atoms for use with the BLYP generalized gradient approximation functional coupled with D3 pairwise dispersion corrections and 6-31+G(2d,2p) basis sets. The combined approach, referred to as BLYP-D3-DCP, offers generally improved performance over both unadorned BLYP and BLYP with D3 corrections with respect to the prediction of noncovalent binding energies (BEs) and covalent bond dissociation enthalpies (BDEs). Predicted barrier heights for a set of pericyclic and Diels-Alder reactions are improved in some instances, as are organic bond separation reaction energies and radical stabilization energies. It is also shown that the BLYP-D3-DCP approach outperforms B3LYP-D3 in the prediction of many chemical properties, in particular noncovalent BEs and BDEs, suggesting that the addition of D3 and DCP corrections, which have negligible computational cost, to simple density functionals like BLYP may elevate their performance to that of more complex functionals such as B3LYP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据