4.3 Article

Temperament and hypothalamic-pituitary-adrenal axis function are related and combine to affect growth, efficiency, carcass, and meat quality traits in Brahman steers

期刊

DOMESTIC ANIMAL ENDOCRINOLOGY
卷 40, 期 4, 页码 230-240

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.domaniend.2011.01.005

关键词

Cattle; Cortisol; Crush score; Flight speed; Stress physiology; Temperament

资金

  1. Australian Cooperative Research Centre for Beef Genetic Technologies, Industry Investment NSW
  2. Queensland Department of Economic Development and Innovation
  3. CSIRO Livestock Industries
  4. University of New England
  5. Meat and Livestock Australia
  6. Australian Brahman Breeders' Association
  7. John Dee Abattoir
  8. Warwick Qld

向作者/读者索取更多资源

Associations between temperament, stress physiology, and productivity were studied in yearling Brahman steers (n = 81). Steers differed in calpain system gene marker status; 41 were implanted with a hormonal growth promotant at feedlot entry. Temperament was assessed with repeated measurements of flight speed (FS) and crush score (CS) during 6 mo of backgrounding at pasture and 117 d of grain finishing. Adrenal responsiveness was assessed with ACTH challenge, with plasma samples collected immediately before and 60 min after challenge. Steers with higher FS and CS had higher prechallenge plasma cortisol, glucose, lactate, and nonesterified fatty acid concentrations. The ACTH-induced cortisol response was unrelated to FS or CS, but glucose remained higher after challenge in flightier steers. The hormonal growth promotant reduced adrenal responsiveness; tenderness genotype had no effect. When temperament assessments and cortisol concentrations before and after challenge were combined in a principal components analysis, four vectors accounting for 38%, 25%, 18%, and 9% of the variation were identified. The first vector had significant loadings on temperament and prechallenge cortisol; increasing scores were associated with increased plasma glucose, lactate, and nonesterified fatty acid and with reductions in BW and feedlot growth rates, carcass fatness, and muscle pH. The second vector loaded only on AM-induced cortisol response; increased scores related to increased residual feed intake, number of daily feed sessions, and meat marbling score. The third and fourth vectors had different loadings on FS and CS and appeared to identify different aspects of temperament measured by FS or CS. Fewer associations were found between the third or fourth vectors and productivity traits, possibly because of lower variance accounted for by these vectors. In conclusion, temperament was related to prechallenge cortisol but not to ACTH-induced cortisol response. Principal components analysis separated these traits into separate components, which in turn had different relations with productivity traits. The largest component of temperament was described similarly by FS and CS, but there were smaller components that these described differently. There were some temperament-related differences in the metabolic status of the steers which were not related to the variation in cortisol, suggesting involvement of the sympatho-adrenal-medullary axis in these temperament-related effects. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据