4.3 Article

Protecting the heritable genome: DNA damage response mechanisms in spermatogonial stem cells

期刊

DNA REPAIR
卷 10, 期 2, 页码 159-168

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dnarep.2010.10.007

关键词

Spermatogonial stem cells; DNA double-strand breaks; DNA damage response; Stem cell niche; Ionizing irradiation

资金

  1. Saarland University [HOMFOR 2006/77]
  2. Deutsche Forschungsgemeinschaft [RU 821/3-1]

向作者/读者索取更多资源

Spermatogonial stem cells (SSCs) must maintain the integrity of their genome to prevent reproduction failure and limit the hereditary risk associated with transmission to the progeny. SSCs must therefore have robust response mechanisms to counteract the potentially deleterious effects of DNA damage, with DNA double-strand breaks (DSBs) representing the greatest threat to genomic integrity. Through in vivo analysis of the DNA damage response of SSCs within their physiological tissue context, we aimed to gain insights into the mechanisms by which SSCs preserve genome integrity. After whole-body irradiation of repair-proficient and repair-deficient (DNA-PK- and ATM-deficient) mice, the formation and rejoining of DSBs was analyzed in SSCs of testis compared with somatic cells of other tissues by enumerating gamma H2AX-. MDC1-, and 53BP1-foci. Caspase-3 and PARP-1 were used as markers for apoptotic cell death. Our results show that DNA damage response mechanisms in SSCs characterized by unique chromatin compositions are markedly different from those of somatic cells. In SSCs lacking compact heterochromatin, histone-associated signaling components of the DNA repair machinery are completely absent and radiation-induced DSBs are rejoined predominantly by DNA-PK-independent pathways, suggesting the existence of alternative repair mechanisms. As a complimentary mechanism characterized by low thresholds for ATM-dependent checkpoint activation, the differentiating progeny, but not the SSCs themselves, promote apoptosis in response to low levels of DNA damage. By evaluating SSCs within their stem cell niche, we show that DNA repair, cell-cycle checkpoints, and apoptosis function together to maintain the integrity of the heritable genome. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据