4.3 Article

Mammalian Fbh1 is important to restore normal mitotic progression following decatenation stress

期刊

DNA REPAIR
卷 9, 期 6, 页码 708-717

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dnarep.2010.03.011

关键词

Fbh1; Rad51; Decatenation; Bisdioxopiperazine; Topoisomerase; Mitosis

资金

  1. [RO1CA120954]

向作者/读者索取更多资源

We have addressed the role of the F-box helicase 1 (Fbh1) protein during genome maintenance in mammalian cells. For this, we generated two mouse embryonic stem cell lines deficient for Fbh1 : one with a homozygous deletion of the N-terminal F-box domain (Fbh1(f/f)), and the other with a homozygous disruption (Fbh1(-/-)). Consistent with previous reports of Fbh1-deficiency in vertebrate cells, we found that Fbh1(-/-) cells show a moderate increase in Rad51 localization to DNA damage, but no clear defect in chromosome break repair. In contrast, we found that Fbh1(f/f) cells show a decrease in Rad51 localization to DNA damage and increased cytoplasmic localization of Rad51. However, these Fbh1(f/f) cells show no clear defects in chromosome break repair. Since some Rad51 partners and F-box-associated proteins (Skp1-Cul1) have been implicated in progression through mitosis, we considered whether Fbh1 might play a role in this process. To test this hypothesis, we disrupted mitosis using catalytic topoisomerase II inhibitors (bisdioxopiperazines), which inhibit chromosome decatenation. We found that both Fbh1(f/f) and Fbh1(-/-) cells show hypersensitivity to topoisomerase II catalytic inhibitors, even though the degree of decatenation stress was not affected. Furthermore, following topoisomerase II catalytic inhibition, both Fbh1-deficient cell lines show substantial defects in anaphase separation of chromosomes. These results indicate that Fbh1 is important for restoration of normal mitotic progression following decatenation stress. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据