4.7 Article

Using multi-scale species distribution data to infer drivers of biological invasion in riparian wetlands

期刊

DIVERSITY AND DISTRIBUTIONS
卷 16, 期 1, 页码 20-32

出版社

WILEY
DOI: 10.1111/j.1472-4642.2009.00631.x

关键词

Flow regulation; hierarchical survey design; invasive plant species; River Murray; spatial scale; vegetation

资金

  1. Australian Postgraduate Award
  2. CSIRO Land and Water
  3. Cooperative Research Centre for Australian Weed Management
  4. Holsworth Wildlife Research Fund
  5. The University of Melbourne

向作者/读者索取更多资源

Aim Biological invasion is a major conservation problem that is of interest to ecological science. Understanding mechanisms of invasion is a high priority, heightened by the management imperative of acting quickly after species introduction. While information about invading species' ecology is often unavailable, species distribution data can be collected near the onset of invasion. By examining distribution patterns of exotic and native plant species at multiple spatial scales, we aim to identify the scale (of those studied) that accounts for most variability in exotic species abundance, and infer likely drivers of invasion. Location River Murray wetlands, south-eastern Australia. Methods A nested, crossed survey design was used to determine the extent of variation in wetland plant abundance, grazing intensity and water depth at four spatial scales (reaches, wetland clumps, wetlands, wetland sections), and among three Depth-strata. We examined responses of exotic and native species groups (grouped into terrestrial and amphibious taxa), native weeds and 10 individual species using hierarchical ANOVA. Results As a group dominated by terrestrial taxa, exotic species cover varied at reach-, wetland- and section-scales. This likely reflects differences in abiotic characteristics and propagule pressure at these scales. Groups based on native species did not vary at any scale examined. Cover of 10 species mostly varied among and within wetlands (patterns unrelated to species' origin or functional group), but species' responses differed, despite individual plants being similar in size. While flora mostly varied among wetlands, exotic cover varied most among reaches (26%), which was attributed to hydrological modification and human activities. Main conclusions Multi-scale surveys can rapidly identify factors likely to affect species' distributions and can indicate where future research should be directed. By highlighting disproportionate variation in exotic cover among reaches, this study suggests that flow regulation and human-mediated dispersal facilitate exotic plant invasion in River Murray wetlands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据