4.5 Article

Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids

期刊

JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING
卷 127, 期 -, 页码 338-346

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.petrol.2015.01.012

关键词

bentonite; drilling fluid; filtration; high-temperature high-pressure; nanoparticle embedded clay hybrids; iron-oxide; low-temperature low-pressure; rheological behavior

资金

  1. Department of Energy

向作者/读者索取更多资源

The fluid filtration and rheological properties of low solid content (LSC) bentonite fluids containing iron-oxide (Fe2O3) nanoparticle (NP) additives and two different NP intercalated clay hybrids, iron-oxide clay hybrid (ICH) and aluminosilicate clay hybrid (ASCH), under both low-temperature low-pressure (LTLP: 25 degrees C, 6.9 bar) and high-temperature high-pressure (HTHP: 200 degrees C, 70 bar) conditions are investigated. The viscosity of each fluid was measured under LTLP and HTHP conditions using a pressurized and heated rotational viscometer. The LTLP and HTHP fluid filtrate volumes were measured in accordance to American Petroleum Institute standards. The addition of ICH and ASCH into bentonite solutions reduced both LTLP and HTHP fluid loss as much as 37% and 47% as compared to the control, under the respective conditions. The pure addition of 0.5 wt% 3 and 30 nm Fe2O3 NP increased the LTLP fluid filtration as much as 14% as compared to the control. However, this addition of Fe2O3 NP decreased the HTHP fluid filtrate volumes as much as 28% as compared to the control. It was found that the addition of clay hybrids reduced LTLP and HTHP fluid loss due to a restructured mode of clay platelet interaction attributed to a modification in surface charge as demonstrated by zeta potential measurements and scanning electron microscope images. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据