4.4 Article

Thymoquinone Pretreatment Overcomes the Insensitivity and Potentiates the Antitumor Effect of Gemcitabine Through Abrogation of Notch1, PI3K/Akt/mTOR Regulated Signaling Pathways in Pancreatic Cancer

期刊

DIGESTIVE DISEASES AND SCIENCES
卷 60, 期 4, 页码 1067-1080

出版社

SPRINGER
DOI: 10.1007/s10620-014-3394-x

关键词

Notch1; PTEN; Pancreatic cancer; Thymoquinone; Chemoresistance; Apoptosis

资金

  1. Fundamental Research Funds for the Chinese Central Universities [2012302020214]
  2. National Natural Science Foundation of China [81172350]

向作者/读者索取更多资源

Background The gemcitabine-insensitivity remains the main challenge for pancreatic cancer treatment. Thymoquinone, the predominant bioactive ingredient of Nigella sativa, has been shown to possess promising anti-cancer and chemo-sensitizing effects on pancreatic cancer, however, its meticulous mechanism is still indistinct. Aim The objective of the present study was to investigate the potency of thymoquinone in combination with gemcitabine in inducing apoptosis and preventing the development of gemcitabine-insensitivity in pancreatic cancer cells. Methods The anti-tumor effects of thymoquinone and gemcitabine were analyzed via evaluation of alterations of cell viability, tumor weight, apoptosis-related proteins, caspase-3, -9 activities and NF-kappa B DNA binding activity in pancreatic cancer cells in vitro and PANC-1 cells orthotopic xenograft in vivo. Results Thymoquinone pretreatment following gemcitabine treatment synergistically caused an increase in pancreatic cancer cells apoptosis and tumor growth inhibition both in vitro and in vivo. The novel combinational regimen also contributes to alterations of multiple molecular signaling targets, such as the suppression of Notch1, NICD accompanying with up-regulation of PTEN, the inactivation of Akt/mTOR/S6 signaling pathways, and the suppression of phosphorylation and nuclear translocation of p65 induced by TNF-alpha. Thymoquinone pretreatment and gemcitabine also induced down-regulation of anti-apoptotic Bcl-2, Bcl-xL, XIAP and up-regulation and activation of pro-apoptotic molecules including Caspase-3, Caspase9, Bax and increased release of cytochrome c. Conclusions This novel modality of thymoquinone pretreatment can enhance the anti-cancer activity of gemcitabine and may be a promising option in the treatment of pancreatic cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据